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An H functional of the single particle distribution function governed by the Enskog lunetic 
equation is suggested. We show its monotonic temporal behaviour from situations near the 
local quilibrium state. 

1 INTRODUCTION 

In 1921 Enskog proposed a modified form of the Boltzmann equation for a 
dense system of rigid spherical molecules, based on intuitive arguments. 1.2 

The importance of this model is nowadays well recognized. It was the first 
one to predict a density dependence of the transport properties of a dense 
gas. Despite its simplicity, values of the transport properties obtained are 
compared favourably with those derived from the more rigorously based 
equation of Choh and U h l e n b e ~ k . ~ , ~  

The approach to equilibrium of the hard spheres gas model described by 
the Enskog equation remains an open problem. No H-theorem, one of the 
great successes of the Boltzmann equation has been established to our 
knowIedge, as it has proved very difficult to extend Boltmann’s ideas be- 
yond the case of a dilute gas5 Moreover serious difficulties remain at the 
conceptual level: even for a dilute gas, Boltzmann’s statistical definition of 
entropy applies only for certain initial conditions, and for a particular class 
of collision mechanism.6 

Recently Prigogine and coworkers reexamined the origin of irreversibility 
in statistical mechanics in terms of generalized H-theorem based on the con- 
cept of symmetry breaking as a dissipative c~nd i t ion .~ .~  They have pointed 
out that if we expect the second law of thermodynamics to be valid what- 
ever the initial state of the system, entropy has obviously to depend generally 
on all dynamic variables of the system.* Several models have been s t ~ d i e d . ~  
We have studied in a first paper, which we refer to as paper I, the time 

TPrcsent address: Service de Radioastronomie Spatiale - Observatoire de Meudon. 92190 
Meudon, France. 
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12 D. HUBERT 

evolution of the moderately dense hard spheres gas. lo Our results confirm 
all the features of this general theory of irreversibility. 

The object of this paper is to study the time evolution of the hard spheres 
gas in terms of the Enkog kinetic equation. In Section 2, collisional transport 
properties are established for the collision operator. Then the Boltzmann’s 
H functional is discussed. In Section 3, we suggest an H functional for hard 
spheres system. Sections 4 and 5 aredevoted to the calculation of collisional 
contributions in terms of local quantities. In Section 6, wederive the correct 
monotonic behaviour of the H functional. These results are discussed in 
Section 7. 

2 THE ENSKOG KINETIC EQUATION AND THE 
BOLTZMANN‘S FUNCTIONAL 

The Enskog kinetic equation has a form similar to the Boltzmann equation 
in the inhomogeneous case, but in the binary collision operator the dimen- 
sion of the molecules is considered, and a factor Y which increases the 
probability of a collision is The kinetic equation reads there- 
fore: 

a’+ v,.-f  a = o2JJdv2dr2dkgI2-k[Y(rI + T&) 1 

at ar, 

1 
2 f(v(, r , ;  t)f(v;, r,; t)S(r,, - oic) - Y(r, - -uk)f(v,, r , ;  t)f(v2, r2i t)S(r,, + uk)] 

where the relative velocity of the particles of mass equal to 1 is 9’2 = v2 - vl, 
k a unit vector along the line of centres of the colliding molecules from 1 to 
2, B their diameter. The function f (v l ,  rl  ; t) is the one particle distribution 
function, and f(v\, rI ; t) is its value before the collision, the effect of which 
is considered. The factor Y is evaluated at the point where the two molecules 
actually collide. It has the same form as the equilibrium radial distribution 
function evaluated as a function of the local density n(r):l2*I3 

Y(r) = (fnu3)-’(B’ + n(r)c’ + n2(r)D’ + . a * )  (2) 
where B’, C‘, D‘ are linked to the virial coefficients, and defined by the 
relations’ 

B‘ = -tJdr,,(e-fiv~z - 1) 

C’ = -+~JdrI2dr , , ( e -pv~~  - l)(e-PV13 - I)(e-flv2j - 1)  
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H-THEOREM FOR THE ENSKOG KINETIC EQUATION 13 

Let us recall that the virial coefficients for rigid spheres are temperature- 
independent and are probably all positive.” 

As is apparent from paper I, we can define two new operators by the 
inversion of the velocities in the collision operator of the Q. (I). One of 
these operators, denoted by 0S2, will be symmetric in the velocities, the 
second Of2 will be antisymmetric. We have: 

and 

( 5 )  

where the operator AI2(k) is such that 

A12@)f(vl, r , ;  t)f(v2, rz; t) = f(v;, r , ;  t)f(v;, r2; t) 
V; = V I  + g12* kk 

In the following g12 * k will be assumed to be >0, unless otherwise, stated. 

(6) 
V; = V) - g,, * kk 

Then the Enskog kinetic equation takes the simple form 

+ O;)f(v,, r , ;  t)f(v2, r,; t) 
at (7) 

To establish an H-theorem we must first write alternative forms of the 
collisional specific molecular properties. Consider the molecular property 
q(v l ,  rJ ; t) and the integral expression 

(8) ~drldr2dvldv2co(v~, r , ;  t)(Of2 + O?Z)~(VI, r,;t)f(v2, r2; t) 

In appendix I we demonstrate relations which express the collisional pro- 
perty of q(v l ,  r l ;  t) alternatively as functions of q(v{ ,  r l ;  t), q(v2, r2; t)and 
q(v5, r2; t). With the relations (I. 5 )  and (I. 13) of appendix I, the collisional 
integral due to Of2 of the molecular property q(vl, r I ; t) becomes 

~ d r , d i 2 d v , d v 2 ~ ( v I ,  r , ;  t)Oy2f(vl, r , ;  t)f(v2, r,; t) 
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The concept of entropy has been generalized to non uniform and non 
stationary states, and for a dilute gas has the statistical definition, (with k, 
the Boltzmann constant) 

S = -L,JJ&,dv, f(v,, r , ;  t)[log f(v,, r , ;  t) - 11 

The H-theorem which shows for a gas not in steady state that the quantity 
S never decreases, is a derivation of the second thermodynamic law which 
states that entropy cannot diminish. 

Consider the Boltzmann functional given by: 

H, = JJ h, dv, f0,. rl ; t) log f(v,, rl ; t) (12) 

To study the behaviour of I& in time we assume that the gas is at rest in 
a smooth vessel, and not subject to any exterior force. We obtain with 
f(1) = f (v l ,  r l ;  t) 

a 
--H, at = JJ&,dv,(l + l o g f ( l ) ) g f ( l )  

af 
at 

We substitute -from the Enskog Eq. (1) which gives 

at = ~ d r l [ ~ d r 2 d v , d v 2 ( l  + log f(l))(O:, + O$)f(l)f(2) 

- Jdvl(l + log f(l))v,  . L f ( l ) J  (14) ar, 

The second term becomes, on transformation by Green’s theorem a surface 
integral. For a smooth vessel, the contribution from this term vanishes.2 

We establish now, in a direct manner, from the alternative expressions 
for transport properties of the collisional operator given by Eqs. (9), (lo), 
that the contribution due to the operator Of2 in Eq. (14) is linked to asource 
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H-THEOREM FOR THE ENSKOG 

of entropy production. We define. it as: 

-k,-’P = ~dr ,d r ,dv ,dv , ( l  

q c  f(vl, r l ;  t)f(v2, rl + ok; t) 
f(v;, r , ;  t)f(v;, r, + uk;  t) 

= i d j  drldv,dv,dkgl2~kY(r ,  + fuk)log 
8 

75 

x [f(v;, r , ;  t)f(vi, rl + uk; t) - f(v,, r,;  t)f(v2, rl + uk; t)] 

fh, r,;  t)f(vz, r l  - afr; t) 
f(v;. r , ;  t)f(v;, r, - uk; t) + La2 8 ~ d r , d v I d v 2 d k g 1 2 - k  Y(rl - faL)log 

x [f(v{,r,;t)f(v;,r, - uk;t) - f(v,,rl;t)f(v2,r, - uk;t)] (1 5 )  
As is evident from this expression this term resembles the Boltzmann 
equation, and for the same reasons as for Boltzmann’s H-theorem, we have 
whatever the initial state of the system, 

P >  0 (16) 

The contribution due to the antisymmetric operator Of2 in Eq. (14) is 
however, 

Q = ~dr ,d r2dv ,dv , ( l  + logf(;))O;f(l)f(2) 

1 
2 2 

(1 + logf(v,,r,;t))[f(v;,r,;t)f(vi,r, + uk;t) + f(v,,r,;t)f(v,,r, + uk;t)] 

- -  - ‘Jdr ,  dv, dv2dkg,, - k Y(rl + -ak) 

- 2 ~ d r , d v I d v 2 d k g 1 2 - k Y ( r I  - -ok) 1 
2 2 

x (1 + log f(v,, r , ;  t))[f(v;, r,;  t)f(vi, rl - uk; t) + f(vl ,r l ;  t)f(v2,r, - uk; t)] 

From the alternative expression for transport properties of the collisional 
operator Of2 which we give in Q. (10) we see that the abovequantity, 
Eq. (1 7), has no definite sign, and is not a well defined expression in terms of 
macroscopic quantities such as density n, average velocity u, or temperature 
T. 

We remark also that whereas a local maxwellian distribution annuls the 
entropy production in the Boltzmann H-theorem, it does not annul the 
corresponding contributions due to the operators 0s2 and Of2 in the Enskog 
model (nor their sum). 

In conclusion if one regards the Boltzmann equation as the description 
of the state of an ideal gas out of equilibrium, then the Enskog kinetic 
equation may be considered as an attempt to describe the non equilibrium 
properties of a non ideal 8%. Then, it is not surprising that the Boltzmann 
% functional is not adequate for the Enskog model. Consequently, in the 

(1 7) 
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76 D. HUBERT 

definition of an H-functional we have to take into account the effects due 
to finite size of the molecules. This is carried out in the next section. 

3 H-FUNCTIONAL FOR A HARD SPHERES GAS 

A basic equation in irreversible thermodynamics is the Gibbs re1ati0n.I~ 
The Gibbs relation states that the local entropy density in a non equilibrium 
system is the same function of local energy and number densities as in 
thermal equilibrium. The validity of the Gibbs relation from Boltzmann's 
kinetic theory has been discussed by I. Prigogine, who has shown that the 
fundamental Gibbs relation remains valid for a large class of irrevsrsible 
processes.15 This class includes the transport phenomena for which the 
statistical distribution functions are defined near the local equilibrium. 

The local entropy density has been discussed from the microscopic point 
of view by E. G. D. &hen et al. l6 They have derived the entropy density 
for a moderately dense gas up to O( vz) terms in the gradients, requiring 
only that the O( v0) contributions to the single-particle and pair distribu- 
tion functions are given by the local equilibrium distribution functions. 

Let us write the expression for the entropy density in terms of reduced 
distribution functions, derived for a system in thermal equilibrium by Green 
and Nettleton, and replace the equilibrium distribution functions by their 
non-equilibrium analogous. I 7 9 l 8  

ns = kBJdvlf(vl,rl;t)(l  - logf(v, ,r,;t))  

+ k~ J dr: dvl dv2[fZ(vl9 ~ 2 ~ 1 1 ,  r2 ; t) - f(vl , r l  ; t)f(v?, r2 ; t) 2 

- f2(vI, v2. r I ,  r2 ; t) log f2(v1.  v2, r I ,  r2 ; t)/f(vl, rl  ; t)f(v,,r2; t) 

+ ~ k B ~ d r 2 d r 3 d v l d v 2 d v 3 [ f 3 (  3 !  ) . . . . I  + .  
If we assume that the reduced correlation functions have the same functional 
dependence on the single-particle distribution function as in local equi- 
librium, as th is  is the Enskog hypothesis, we obtain for a hard spheres 
system the simplified form 

DS = &BJdvlf (v l ,r l ; t ) ( l  - logf(v, ,r,;t))  

+ l&, I dr2dvl dv2f(v, , r l  ; t)f(v,,r,; t)(e-bvli - 1 )  
2 

+ l k ~  Jdr2dr3dVldV2dV3f(l)f @)f(3)(e-P'81 - l)(e-Pvii - l ) ( C b V l i  - 1) + . . . . 
3 !  

(19) 
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H-THEOREM FOR THE ENSKOG KINETIC EQUATION 

Since we are interested in physical situations near the local equilibrium 
state, the single particle distribution functions vary slowly in space. We then 
expand the position dependence appearing on the right hand side of Eq. (19) 
around a fixed point which is obviously r l .  This yields up to O( v2) terms 
in the Taylor expansion, where the virial coefficients do not depend on p 
for a hard spheres gas ( p  takes its value in r l ) :  

ns = ~ B J  dvlf(vl ,r l ; t ) [ l  - l og f (v , , r , ; t ) ]  

t 1. kB I dr,dv, dv, f(vl ,  rI ; t)[f(v,, rl ; t) t r I 2 .  -f(v,, r, ; t)  t . . . 

I1 

a 
2 ar1 

+ . . . ](e-b’iz - 1) 

t kB dr2dr3 dv, dv2dv3 f(vl ,  rI ; t)[f(v2, rl  ; t)f(v,, rl  ; t) 3! 

+ .. . ](e-b“i~ - ])(e-P”’i - ~)(e-P”’i - 1) + .. . (20) 
By integration over ti with i f 1 the O(V) terms in Eq. (20)vanish,I6 but 
the O( V2) terms give a contribution. Thus the entropy density given by 
Eq. (20) and written as ns = ns(n, T) t O(V2) is the same function of the 
density and the temperature as in thermal equilibrium up to terms of O(v 2). 

The value of ns(n, T) is for a hard spheres 

where n is the local density of the gas, T, the local temperature, and B’, 
C’, D’ coefficients linked to the virial coefficients defined in Fq. (3). The 
entropy density so defined depends on space and time only through its 
dependence on n and T. 

The expression on the entropy density in terms of singlet distribution 
functions given in Eq. (20) suggest that one can define an H functional for 
the hard spheres gas in the form 
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78 D. HUBERT 

the space integration over drl extending throughout the volume of the 
vessel. Taking the time derivative of this expression we obtain from the 
Enskog Eq. (1): 

a ?!. = S d r ,  dvl(l + log f(l))[Jdr2dv2(O;2 + O;)f(l)f(2) + v I -f(l)I ar 

= Jdr,  dv,(l + log f(l)#J-dr2dV2(0s, + 0 1 2 )  A f(Vf(2)l 

at 
a n2 n2  

2 3 
+ dr, %[n(rl ; t)(n(rl ; t) B' + -(rl ; t) C' + -(rl ; t) D' + . a)] 

+ k,'Jdrldiv(nsku(rl;t) + Jsk) 

+ ~ d r l ~ [ n ( r l ; t ) ( n ( r l ; t ) B  + -(rl;t)C' n2  + -(rl;t)D' n3 + ...)I 
(23) 

(24) 

2 3 

where 

nsku(rl;t) = -kB Idv,uf(l)(log f(1) - 1) 

is a convective term, in which u = dvl v I  f(1) is the mean velocity, and 

J,, = -kB JdVl(v1 - u)f(l)(bg f(1) - 1) (25) 

represents a part of the entropy flux. 

into 
The third expression in Eq. (23), which we denote by R, is transformed 

n2 n3 a R = dr, (n (rl ; t) B' t -(rl ; t) C' t -(TI ; t) D' + . a) -n (rl ; t) I 2 3 at 

a 
at 

t Id r ln ( r l ; t ) (B '+  n(r, ; t)C'+ n2(r,;t)D'+ . . a ) -  n(r,;t) (26) 

With the help of the continuity equation:2 

(27) 
a -n(rl;t) + div(n(r,;t)u(r,;t)) = 0 at 

the expression R is transformed into 

nz n3 
2 3 

R = - drl(n(r l ; t )B + -(rl;t)Cr + -(r,;t)D' + ...) div(n(r,;t)u(r,;t)) 

a 
I 
-jdrln2(r l ; t ) (B'  + n(r,;t)C' + n2(r,;t)D' + ...)- -.u(rl;t) 

h i  

a 
ar1 

-Jdrln(rl;t)(B' + n(rl;t)C' + n2(rl;t)D' + . . -)u(rl ; t)-  -n(r,;t) (28) 
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H-THEOREM FOR THE ENSKOG K r ” I C  EQUATION 

The second term in the right hand side of Eq. (3) contains the factor Y 
evaluated in r 1  (cf. Eq. (2)). We can also transform the third term in Eq. 
(28) such that 

79 

nz n3 
dr, (n (r , ; t) B’ + -(rl ; 1) C’ + -(r I ; t) D ‘ t - -) div (n (r, ; t) u (r, ; t)) R = - l  2 3 

a 
ar1 

- ;nu3 dr,Y(r,)n2(rl ;t)--.u(r,;t) 

n2  n 3  
ar, 2 3 

3 I 
- ~ d r , n ( r , ; t ) u ( r , ; t ) ~ - [ n ( r l ; t ) B ‘ + - ( r l ; t ) C ’ +  a - ( r , ; t )D’+  . . - I  

n 2  dr, div [ n (r, ; t) u(r, ; t) (n(rl ; t) B’ + - (r, ; t) C’ + L ( r ,  ; t) D’ + 2 3 .)] = - 

I a dr,Y(rl)n2(rI;t)-- .u(rI;t)  = k i l  dr,divns,u(r,;t) 
ar1 

(29) 
a 

. 3  

dr,Y(r,)n2(rl;t)-- .u(rI;t)  
3 ar, 

where ns, is the interacting entropy density. 

a for - H 
a t  

Substituting the value of R given by the Eq. (29) in Eq. (23) we obtain 

= J’dr,dr2dv,dv2(1 + logf(l))[O7, t Ofi]f(l)f(2) 
at 

+ k;IIdr,div[n(sk t s,)u(rl;t) t J,J 

(30) 
a 

dr,Y(r,)n2(r, ;t)-.u(r,;t) 
3 ar,  

As we have demonstrated in the second section the symmetric operator 
Of2 gives a non positive contribution to Eq. (30), but we know nothing 
about the contribution of the operator 0; in the general case of a given 
distribution function. We will therefore consider the situation near local 
equilibrium in the next section. 

4 THE CONTRIBUTION DUE TO 0:: NEAR LOCAL 
EQUlLl BRI UM 

Let us recall that the Enskog equation may be solved by expanding thedis- 
tribution function in a series such that 

(31) f(1) = fR(1 + +It1 t ,h? + ...) 
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80 D. HUBERT 

in which f 8 is the local equilibrium distribution function 

and # a linear function in the first derivatives in T, and the mean velocity 

The first approximation terms due to the antisymmetric operator Op, 
in Eq. (30) are obtained by expanding Y, f(2), in power of uk by Taylor's 
theorem. Retaining only the first and third derivatives, we obtain res- 
pectively 

Q, = 0 3 ~ d r , d r , d v 2 d k g , , ~  kY(r,)(l  + log f(1)) 

[ f(v;, r l  ; t )  k * -f(vi, r l  ; t) + f (vl , rl ; t) k - - f(v2, r I ; t)] 

t L d f d r ,  dv, dv2dkg,, - kk .  -Y(rl)(l + logf(1)) 

[f(v; ,r l ; t)f(vi .r l ; t)  + f (vl , r l  ;t)f(v2,r1;t)1 

U. 

a a 
ar1 ar ,  

(33) 
a 

2 &I 

and 

Q3 = $ ~ d r , d v , d v , d k g , , - k  

x [f(l')f(2') + f(l)f(2)] 
1 a a  a + -kk:--Y(r,)logf(l) + f(1)k. -f(2)1 
2 ar ,  ar ,  ar1 

a + k. -Y(r,)logf(l) + 
ar,  

2 
3 

+ -Y(r,)logf(l) 

Considering the inverse collision, the expression in Eq. (33) is transformed 
into 

Q, = c3 I dr I dv, dv, d k g,, * k Y (c I ) log -f (vl , rl ; t) k * -f (v, , r l  ; t) f(1) a 
f(1') ar, 

t - 0 3 1 d r , d v ,  1 d v 2 d k g I 2 .  kk.-Y(r,) log-f(v, ,r , ; t ) f (v2.r2;t)  a f(1) (35) 
2 ar, f (19 

where 

f(1') = f(v; ,r , ; t)  
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H-THEOREM FOR THE ENSKOG K " I C  EQUATION 81 

If we substitute into Eq. (35) the series for f(l), f(2) given by Eq. (31)we 
obtain for Q I ,  Q3 the series 

f I3  a (  Q p) = u3 dr, dv, dv, dk g,, - k Y (r )log - f f l  k - - f (3 
ar, 

+ -u3 1 I dr, dv, dv, dkg,, * kk * -Y(rl)log a f13 -f I8 f $ 
ar1 f h7 2 

fI3 a 
f o 9  ar, 

a[') = u3 J dr, dv, dv, dk g,, . k Y(rl )log [f8 4 $1 k - -f 
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ar, ar, 
+ 5 I dr, dv, dv, dk g,, * kk - -Y a (r, ) log f 

4 ar, 
+ fRkk:--fm] a a (0) 

ar, ar, 

4.1 The expression Q\Or 

We have to evaluate the expression Q(O)given by the first expression in the 
Eq. (37). It is transformed into 

Q\O) = CT’I dr,dv,dv,dkgl2-kY(r,)f~$f8k--%og(Y(r,)f8fb4) (39) 

or after substituting the values of f 8, f 8 and integrating over k and v2 
(cf. Ref. 2, Eqs. (16, 32, 3, 4)). 

Qio) = -)nd l d r ,  dv, n(rl)Y(rl)f810g f 8  

ar, 
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The integration over v1 gives us the simple result 

a 
ar, (41) dr,n2(r,;t)Y(r,)--.u(r,;t) 

4.2 The expression QY) 

The last term in the expression of Qf) in Eq. (37) is identically zero as 
we see it easily when using the definition conditions2 of 9 ti]: 

I d v , f 8 # $ 1  = 0 

I d v ,  (v, - u ) f 8 $ 8 ]  = 0 

(v, - u)2f8$It1 = 0 (42) 

With the relation 

f8 f8l 
fh? f8 

In - = -In - (43) 

and permuting the particles 1 and 2 in the first term of Q?] I we obtain 
then 

Using the relation (43) in the second term of Eq. (44) and permuting the 
particles 1 and 2 we obtain 

From the relation (43) and the definition conditions of given by Eq. (42) 
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84 D. HUBERT 

we have the simplification into 

Q Y )  = ~ ~ d r , d i v f d v , d * , d k g , , ~ k k  Y(rl)log@f8ft2(#ttj  + #ti{) 

- u3fdr l  dv,dv,dkg,,~ k Y(rl) k -  a l o g f 8  x f g f t 2  ,d! 

f 8 2 

&I 

(46) 

Invoking the inverse collision in the second term of the above expression 

- u3 ~dr1dv ,dv2dkg: , .k  Y(r l )&f8k. - f1a  a m  
ar, 

we obtain 

Qi’) = ~ ~ d r , d i v ~ d v , d v 2 d k g l l . k k  Y(r,)log, f 81 
fo)  

The calculation of this quantity gives us 

Q;I) = $-~dr ,d iv fdv1dr ,dkg , ,~k  Y(rl) 

From Ref. 2 Eqs. (16, 42, 1) and Eqs. (16.8, 9) the integr 
easily performed, we have 

ti 

= ki’ f i r ,  div ($) 

ov 

(48) 

r k is 

where J:: represents a part of the entropy flux and 

(50) 

is the first part of the collisional transport of energy to first approximation; 
q:l) being the 6rst order approximation to the transport of energy by mole- 
cular motion. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



H-THEOREM FOR THE ENSKOG KINETIC EQUATION 85 

4.3 The expressions Qr) and Qr' 
The third term Q;' in Eq. (37) can be simplified. After some algebra which 
we develop in appendix I1 it takes the form 

Qi') = kg' l d r ,  div J:: 

q: where J:;l = - represents a second order part in 0(v2)  of the entropy 

flux in which 
T 

Q 

(52) 
(2) 

qw = +no3n2(r l )~ (r l ) (v l  - u)2(vI - u) = h n a 3 n ~ $ Z )  

is the first part of the collisional transport of energy to second approxima- 
tion. 

The last three terms in Eq. (51) have no macroscopic meaning and cannot 
be put under the form of the divergence of an expression. This point will be 
discussed in the conclusions. 

Let us remark that the quantity Qj" is expressed in terms of the local 
equilibrium distribution functions and then contribute when the system has 
reached its local equilibrium state. It gives as Q;' terms of O(v3) order. 

5 LOCAL FORM OF THE CONTRIBUTIONS DUE TO THE 
SYMMETRIC OPERATOR Ofz 

In Section 2 we have demonstrated that when considering a closed system, 
the contribution due to the symmetric operator 0s2 in Eq. (14) is SOand 
resembles an entropy production whatever the state of the system. But it 
does not give the form of the local entropy production. 

Let us then calculate the local contributions due to Os2 in Eq. (30). By 
developing the collisional operator Ofz in function of ok, we obtain adecom- 
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position of the expression 

AH = ~ ~ d r l d r z d v l d v 2 ( l  + logf(l))O~,f(l)f(2) (53) 

in a series of even terms in (I 

AH = A H ,  + AH2 + A H ,  + (54) 

(55) 

with 

A H ,  = Jdr, dv, (1 + logf(l))I, 

and Ii given by the collisional integrals 

I, = dJJdv2dLg, , .k Y(rl) - f(l)f(2) 1 
a a  I, = <Jfiv,dkg, , .kY(r l ) p ( l t ) k k : q F  a a f(2‘) - f(1)kk: - &I &I -f(2)1 

- f(l)f(2) 1 + < $bv2 dk g,, - kkk: - - 

We notice that I. has a form similar to the Boltmann collisional operator. 
It gives a local contribution to AH,, under the well known form, such that 
we have immediately A& 6 0 whatever the state of the system given by 
Eq. (31), that is 

The contributions of 12, 14to AH2, AH4respectively are more complicated 
to analyse. Nevertheless let us introduce the development of f given by 
Eq. (31) in Iz, and also in AH2. We obtain successively. 

6.1 The expression 

It is 

AH:‘ = J$drl dv, (1 + log f 8  I? 

= “(ldr,dv,dv,dLgl2.kY(r,)1ogf~~ 2 
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a (a) dr ,dv ,dv ,dkg , ,~kk~-Y(r , ) log f~ i~  
ar, 

This contribution can be transformed as in the case of invariant of collision 
(cf. Ref. (1 l), 99.3). We get then O( v2) terms in the gradients: 

On carrying out the integrations the first term in Eq. (59)gives acontribution 
which as the form of the divergence of an entropy flux, the second of an 
entropy production. 

where by definitions we have (see Ref. 2, $16.4) 

c, = tke 
w = Qn”Zu4n2Y(kBT)1/2 

0 

o a  a 
ar1 

e = -u is the rate of shear of the velocity gradient tensor -u; U = ii + 

jj + kk is the unit tensor and J1V2 = is a part of the entropy flu in which 
(1) 

T 

ar1 
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88 D. HUBERT 

is a second part of the collisional transport of energy to first approximation. 

is a second part of the collisional transport of momentum to first approxi- 
mation. 

In appendix III we have shown that the second term in J3q. (59) is negative. 
It is linked to the entropy production as we can see it in Eq. (60). 

5.2 THE NEXT ORDER TERM 

To next order of approximation in AH2 we obtain O(0  3 ,  terms contained in 
AH!) such that 

After some algebra we obtain from appendix IV 

a a fgi 
ar, ar, 

kk:- -  

Then we see that AH:’’ gives a contribution to the entropy flux and to the 
entropy production, but the last two terms in Eq. (65) have no macroscopic 
meaning. 

The next order terms in AH2 will be obtained in a similar way:As we limit 
our analyse to the third approximation in f(l), we have all the terms required 
for the entropy production and flux to O(v3) order. 

6 THE H-THEOREM 

As we have shown in paragraphs 4 and 5 all the contributions calculated at 
O( v2) have a macroscopic meaning but this is no longer true at O(v3). 
Then let us consider first the contributions at O(v2)  in -H. B 

at 
In order to do that we substitute the contributions due to Os2 in Eq. (30) 
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by AHo and AH? those of Of2 in Eq. (30) by Qr) and Q:). Considering the 
explicit form of AH:) given by the Eq. (60) we can write: 

+ kg' S d r ,  div[nsu + J,k + J6vI + J6v2] 

where 

JJdrl dv, (1 + log fw)b + Jdr, [ I d v ,  (1 + log f8)I:) 

- kildiv($)] 0 

is linked to an entropy production. 

which the distribution function is defined under the form 
In fact the validity of the H-theorem is limited to the class of states for 

(68) 
where f R  4);) is the second Chapman-Enskog approximation to f(1). 

For situations far from local equilibrium states we will have to take into 
account O(v3) terms in the contributions of the antisymmetric operator 
Or2. We will have also to define a new H-functional because the quantity H 
defined in Eq. (22) is inadequate at O(V3) terms to take the form 

f(l) = f 8  (1 + ,I%) 

(69) 
-H a = -k , lP+ k,'Jdr,divJ, 
at 

with P 2 0 the entropy production and J, linked to an entropy flux. This is 
still an open problem which has to be linked to the need of ageneral condi- 
tion of di~sipativity.~ 

We conclude that for a closed system the H-functional can only decrease 
in the course of time: 

-= aH 0. 
at 

and in fact H must approach a limit as the time tends to infinity. When the 
state of the gas is steady, so that - = 0 and - = 0, this implies that first af aH 

at at 
A h  = 0. Consequently log f must be a summational invariant for the col- 
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90 D. HUBERT 

lisional integral b. From the Boltzmann classical result we have 

because the gas is supposed to be at rest. 

must have from Eq. (111.3) of the appendix 111: 
Secondly we must have also AH;' = 0, that is for fI% evaluated in r1  we 

It is easy to see that T(rl) must be independent of r l ,  and that this implies 
I2 E 0. We shall have 

The Enskog equation (in the order approximation considered) reduces to 

from which an equation for n(rl) is obtained 

(75) 
a 2 v, .  -(n(rl) + - n d Y n 2 ( r , ) )  = O 

The function fq with n(rl) satisfying Eq. (75) will be called an equilibrium 
state.I9 But as the virial coefficients for rigid spheres are probably all posi- 
tive" this implies that n is necessary independent on r l .  Then the equi- 
librium state is the uniform state of the usual form of Maxwell's distribution 
function. 

&I 3 

7 CONCLUDING REMARKS 

The fundamental problem of irreversible statistical mechanics is to describe 
how dynamic systems are driven to equilibrium. Boltzmann's H-theorem has 
proved to be impossible to extend to dense system, but as we know his H- 
theorem requires strong assumptions about the initial preparation of the 
system. Then, the failure to extend it is not so surprising. 

Nevertheless it is possible, on the basis of the Enskog kinetic equation, 
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to obtain an H-theorem for a dense gas and for the class of states near local 
equilibrium. 

For situations far from local equilibrium we have shown the impossibility 
to put O( v3) order terms as entropy source strength or entropy flux. For 
such situations the H-functional has to be modified in the interacting entropy 
term. But these new terms will be associated to QT) as they contribute in 
local equilibrium. Then in Q;' we have from Eq. (51) terms which have no 
definite sign and which cannot be put under the form of a divergent flux. 

In the non linear range of the thermodynamics theory of irreversible 
processes it is then impossible to get an H-functional in terms of reduced 
distribution function. This problem remains an open question which has to 
be linked to the need of a general condition of dissipativity whatever the 
initial state of the s y ~ t e m . ~ . ' ~  

Our results can be extended directly to hard disks r n ~ d e l s , ' ~  as well as to 
the modified Enskog equation for simple gas proposed by H. Van Beijeren 
and M. H. Emst. l 3  The case of mixtures will be discussed in a further paper. 
They also may be applied to Enskog-Vlasov or Enskog-Fokker Planck 
equations, where the Vlasov term does not contain dissipativity.20.21 
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Appendix I 

Consider the molecular property q(vI, r l  ; t) and the integral expression 

A = i,2.k>o dr1 dv, dv, dk g,2 * k d v , ,  rl ; t)Y(r, + t.lr> 

x f(v;, r , ;  t)f(vi, rI + uk; t) 
Dynamical reversibility imposes that this expression, evaluated on direct 
encounters specified by (vI ,  v2, k), be equivalent to a summation over all 
possible inverse encounters specified by (v!, v;, - k). Hence the integral A 
becomes equal to 

(1.1) 
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92 D. HUBERT 

Using the same arguments, the next quantity B, is transformed succes- 
sively into 

B = 1 dr2dvldv2dkg,2~kp(v,,rl;t)Y(r, + i d )  

x f(v,, rI; t)f(v2, rI + d; t) 

,,.k>O 

[f(vi,r,;t)f(v$,r, - uk;t) - f(vl,rl;t)f(v2,rl - ok;t)] (1.4) 
This relation (I.4), with the similar one obtained changing k in - k gives an 
interesting transformation of the collisional integral obtained from OS2, 
that is 

J h 2  dvl dv2 v(vl, rl ; t) 0s2 f(v,. rl ; t) f(V2, r2 ; t) 

= i J&l*2d*l dV2[p(Vllrl;t) - p ~ ,  r , ; t ) ] ~ ~ ~ f ( v ~ , r , ; t ) f ( V ~ , r ~ ; t )  (1.5) 

Now in the expression A given by (I.1). consider the transformation of 
the variables (v,, v2) to (v2, vl), then (vi, v i )  must be changed@ (v$,v;)(this 
result is evident from the velocity transformation operator given by Eq. (6)). 
Then we have successively 

C = h,dvIdr2dkg,,~kp(v,,rl;t)Y(r, + fuk) x f(v;.r,;t)f(v$,r, + uk;t) 
L I i k > O  

= - -c.,,.k<o dr,d~,dV2d~gl2'kQ(V2rrl;t)Y(~l + fuk) 

x f(v;,r,;t)f(v$,r, + uk;t) 0.6) 
This becomes, after transforming the integration on the space g12 - k > 0, 

C = I dr,dvIdv2dkg,,.kp(v,,r,;t)Y(r, - tuk)f(vi,r,;t)f(v;,r, - ok;t) 

= I~~~,l,~dr,dvldv2dkg12.kp(v2,rl + uk;t)Y(rI + 4 4  
I i i ' k > O  

f(v;,r,;t)f(v;,r, + ok;t) 
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When making the summation over the inverse encounter the quantity C is 

C = J 111' k >o 
dr,dv,dvzdkg,,-kp(v,,r, - ok;t)Y(r, - f a k )  

x f(v,, rl;t)f(vz,ra - ak;t)  (1.8) 
Using the same arguments as in transforming the expression C, when making 
the inversion of variables on (v,, v2), the next quantity denoted by D, trans- 
forms into 

f(vi,rl;t)f(v$,rl - ak;t)  (I. 10) 
Combining the relations (1.7) and 0.9) (and remembering that similar 

relations can be obtained by changing k into - K), we get the next property 
for Of2 that is 

s d r ,  dr2dvl d v ~ p ( ~ ~ , r ~ ; t ) O S * f ( v l , r ~  ; t)f(v~,rz;t)  

= dr, dr, dvl dvz d v 2 ,  rz ; t) Of2 fh, rl ; t) f(vz, r2 ; t) 0.11) 

From (1.8) and (I. 10) we obtain yet another property, that is 

s dr; dr2 dv, ~ V Z  ~ ( V I  , r~ ; t) O?Z f(v, r~ ; t) f h ,  r2 ; t) 

= - Jdr, dr2dv, dv2p(vi,r2;t)O~2f(vl,rl;t)f(vz, rz;t)  (IW 

With the relations (I. 1 1) and (I. 12) we obtain anew relation which expresses 
the collisional property q(v ,, r I ; t) due to Of2 alternatively as a function of 
dv2,  r2; t) and dV5, r2; t) 

J dr2 dv, dvz p(vI, r l ;  t) OSZ w,; rl ;  t) f(V2, r2 ; t) 

= tJ dr,dr2dv,dv, - p(v$,rz;t) Of2f(vl,rl;t)f(vZ,rZ;t) (I.13) I 
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Appendix II 

When using the identity fly] f 8  = fo9 (0) fez? (0) the quantity Qi2) given by the 
Eq. (37) is simplified into: 

Q1(' = & l d r ,  dv, dv, dk gi2 - kk - - a Y(r,)log - f 8  f($ ( f(q (0) 

ar, fo7 
2 

x ($81 $8 + +dl8 + $42) 
+ 03J dr, dv, dv, dkg,, - k Y(r,)log$- 

fo9 

The two first terms can be transformed as in the case of Q!'), and the fifth 
one simplified by integration on v I  . We obtain 
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H-THEOREM FOR THE ENSKOG KINETIC EQUATION 9s 

is a first part of the collisiond transport of energy to second approxima- 
tion. 

This can also be written under the form 

Qi2) = k i l  $ dr, div [ $1 

a o ,  - u3 $ dr, dv, dv, dk g,, k Y(rl) # 8 f  8 k  - -f {Q 

- 

By integration over v1 and v2 the second term in Eq. (1 1 A) does not contri- 
bute. The third is compensated by the sixth one. The other terms can also 
be simplified by integration over v1 and vi. The find result is 
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Appendix 111 

Consider the expression 

(III. 1) 

When considering the inverse collision, this is written under the form 

011.2) 

and permuting the particles 1 and 2 this is also 
AH(:)’= - ~ ~ d r , d v , d v , d k g , , ~  kY(r,)f(i)f(z, (0) (0) 

16 

= - “ I d r ,  dv, dv2dkgl ,  - k Y ( r , ) f 8 f  8 
16 

This expression is seen directly to be a0. 
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Appendix IV 

We have explicitly 

AHp = ~ ~ d r , d v , d v 2 d k g I 2 ~ k Y ( r , ) ( l  2 + logfl8) 

The two first terms can be transformed as the similar terms appearing in 
AHT) (cf. Ref. (ll),  $ 9.3). They give similar contributions to the third 
order in O(v). The third term in Eq. (IV.1) is identically zero. The last two 
terms can be simplified, but it is shown that they have no macroscopic 
meaning: 
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98 D. HUBERT 

with by definition 

- u ) ~  - (vI - u), 1 
(Tv.3) 

is a second part of the collisional transport of energy to second approxima- 
tion 

p s  = E Y  I dv, dv, dk g,, - kk [(v; - 11) - (v, - II)] 
4 

V.4) 
is a second part of the collisional transport of momentum to second 
approximation. 
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